آشفتگی فوق اشتقاق های سه تایی و پایداری اشتقاق های مکعبی سه تایی در جبرهای سه تایی

thesis
abstract

در سال ‎1940‎ ،اولام ‎‎‎‎‎‎‎‎‎‎ سوالی درباره نگاشت های تقریبی مطرح کرد به این مضمون که ((تحت چه شرایطی یک همریختی تقریبی به یک همریختی نزدیک می شود؟(( در سال ‎1941‎ ،هایرز‎‎جوابی مثبت به سوال اولام درفضاهای باناخ ارائه داد در واقع ثابت کرد اگر ‎ ‎??0 و f:x?y‎ نگاشتی از فضای نرم دار ‎ x ‎ به فضای باناخ ‎ y باشد به طوری که ‎‎ ?f(x+y)-f(x)-f(y)??? (x,y?x) (1) آن گاه نگاشت جمعی منحصر به فرد t:x?y ‎ وجود دارد به طوری که ‎?f(x)-t(x)??? (x?x) این پدیده، پایدار‎ی‎هایرز-اولام معادله تابعی جمعی‎ ‎ g(x+y)=g(x)+g(y) ‎ نامیده می شود. تعمیمی از قضیه اولام را برای نگاشت های تقریبا جمعی توسط راسیاس‎ در سال ‎1978‎ با جایگزین کردن نامساوی بالا به صورت‎‎ ‎‎‎ ?f(x+y)-f(x)-f(y)???(?x?^p+?y?^p) (x,y?x) (1) اثبات نمود. این نوع پایداری معادله تابعی جمعی ‎ g(x+y)=g(x)+g(y) ‎ پایداری هایرز-اولام-راسیاس نامیده می شود. پس از آن تعمیم های دیگری از پایداری توسط ریاضیدانان ارائه شد. در سال ‎1949‎، بورگین‎ ابر پایداری‎ همریختی های حلقه را ثابت کرد. جون ‎‎‎‎‎ و کیم‎‎ در سال ‎2002‎ معادله تابعی‎‎ ‎‎‎ f(2x+y)+f(3x-y)=2f(x+y)+3f(x-y)=12f(x) را معرفی و حل کردند و پایداری هایرز - اولام- راسیاس را برای این معادله تابعی اثبات نمودند. یک جواب معادله فوق، معادله مکعبی ‎ f(x)=x^3 ‎ است. به این دلیل معادله تابعی فوق، معادله تابعی مکعبی نامیده می شود و هر جواب از این معادله را یک تابع مکعبی گویند. جون و کیم ثابت کردند تابعی مانند ‎ f ‎ بین دو فضای برداری‎ x ‎ و ‎ y ‎ جوابی از معادله تابعی مکعبی است اگر و فقط اگر تابع منحصر به فرد‎ c:x×x×x?y ‎ وجود داشته باشد به طوری که ‎ f(x)=c(x,x,x) (x ?x) و ‎ c ‎ با ثابت گرفتن یک متغیر، تقارنی است و با ثابت گرفتن دو متغیر جمعی خواهد بود. ‎‎ گونه ی دیگر پایداری‏، پایداری راسیاس-ایساک است که اگرe_1 ‎یک فضای برداری نرم دار و e_2‎ یک فضای باناخ حقیقی ‎ باناخ حقیقی باشد و f:e_1?e_2یک نگاشت باشد به طوری که ‎ ‎f(tx)‎ در ‎ ‎t‎ برای هر ‎ ‎x‎ ‎ ثابت پیوسته باشد و همچنین اگر ‎ ‎f‎ یک نگاشت جمعی باشد که در شرایط زیر صدق کند ‎‎ ‎‎‎?(ts)??(t)?(s) (t,s ?r^+) ?(t)1) در این صورت یک نگاشت خطی یکتای ‎ t:e_1?e_2 وجود دارد به طوری که ‎‎ ‎‎?f(x)-t(x)??(2??(?x?))/(2-?(2)) ‎که به نگاشت f:e_1?e_2 ‎نگاشت ?‎جمعی گفته می شود اگر و فقط اگر??0 ‎و?:r^+?r ‎ وجود داشته باشد به طوری که ‎lim?(t??)??(?(t))/t=0? ‎ و ‎‎ ?f(x+y)-f(x)-f(y)???(?x?+?y?) (x,y?e_1 ) در سال ‎2006‎ ، بادورا‎‎ ‎‎پایداری هایرز-اولام ، پایداری راسیاس-ایساک ‎‎ و پایداری هایرز-اولام-راسیاس و ابر پایداری بورگین اشتقاق ‎‎حلقه را روی جبر های باناخ ثابت کردند . میورا‎‎ ثابت کرد اگرa ‎‎ یک جبر باناخ بدون رتبه باشد و f:a?a ‎نگاشتی باشد که برای مقادیر ??0 ‎وp?0 که p?0‎در شرایط زیر صدق کند ‎‎‎ ?f(x+y)-f(x)-f(y)???(?x?^p+?y?^p) (x,y?a) ?f(xy)-xf(y)-f(x)y???(?x?^p+?y?^p) (x,y?a) آن گاه ‎ ‎f‎ یک اشتقاق حلقه است.‎‎‎ هم چنین در سال ‎2007‎ ، پارک‎ ‎‎ و مصلحیان‎ مساله پایداری همریختی های سه تایی و اشتقاق های سه تایی را بیان و اثبات کردند. در این رساله وجود یک فوق اشتقاق سه تایی نزدیک به یک فوق اشتقاق سه تایی تقریبی را با در نظر گرفتن پایداری هایرز-اولام-راسیاس برای فوق اشتقاق های سه تایی در جبرهای باناخ سه تایی ثابت می کنیم. هم چنین پایداری و ابر پایداری اشتقاق مکعبی سه تایی روی جبرهای فرشه سه تایی را مطالعه می کنیم. عملگر های جبر سه تایی‎ در قرن ‎19‎ میلادی توسط چند ریاضیدان مورد توجه قرار گرفت. ابتدا کیلی‎ ‎‎در سال ‎1840‎ مفهوم ماتریس های مکعبی و تعمیمی از دترمینان به نام ابردترمینان‎ را مطرح نمود که در ‎1990‎ توسط کاپرانو‎ ‎ ‎‎ ،گلفند‎ ، زلوینسکی‎ ‎ مجددا بررسی و تعمیم داده شد. دستگاه های جبری سه تایی کاربردهایی در فیزیک، آمار، نظریه های فوق تقارنی و ... دارد‎.‎ این رساله در سه فصل تنظیم شده است. در فصل اول به بیان مفاهیم و قضایای مورد نیاز در فصل های بعد خواهیم پرداخت که به طور عمده از کتاب های ‎ ‎ ‎‎‎gerad‎. ‎j‎. ‎murphy‎‎ ,c^*algebra and operator ‎theory,‎ academic ‎press‎‎,‎‎‎ ‎199‎0.‎ و ‎ ‎w. ‎rudin,‎ functional ‎analysis,‎‎‎ mcgraw-hill, ‎‎‎‎197‎3.‎ استفاده شده است. فصل دوم برگرفته شده از مقاله های ‎ ‎k‎ ‎-h.‎ ‎park and y‎. ‎-s.‎ ‎jung‎, ‎perturbations of higher ternary derivations on banach ternary ‎algebra‎‎, ‎common‎. ‎k‎orean math‎. ‎soc‎. ‎23‎(3)‎ (2008)‎, ‎387-399‎. و‎ ‎b‎. ‎hayati‎,m. eshaghi gordji, ‎m‎. ‎bavand savadkouhi and m‎. ‎bidkham‎,‎stability of ternary cubic ‎derivation ‎on ternary ferchet algebras‎}‎‎, ‎australian ‎j‎ournal of ‎b‎asic and ‎a‎pplied ‎s‎ciences‎, ‎5(5) (2011)‎,‎ 1224-1235‎ . است در آن به آشفتگی فوق اشتقاق های سه تایی در جبرهای باناخ سه تایی و پایداری اشتقاق های مکعبی را در جبرهای فرشه سه تایی بررسی و مطالعه می کنیم. سپس در فصل سوم این نتایج را در مورد اشتقاق ها و فوق اشتقاق های مکعبی روی جبر های نرم دار چندگانه تعمیم می دهیم‏، ‎‎بخش سوم این فصل از مقاله ‏‎t. ‎l. ‎shateri ‎and ‎f. ‎fatemi ‎niya, ‎‎ stability of ternary cubic higher derivations in ternary multi-normed ‎algebras‎‎‎, ‎submitted.‎ برگرفته شده است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بررسی محاسباتی حالت های الکترونی یک تایی، سه تایی و پنج تایی نایترنواتینیل هالوسایلیلن

:از جفت شدن یک مرکز سایلیلن سه­تایی و یک مرکز نایترن سه­تایی با اسپین یکسان با رابط استیلنی، ساختارهای جدیدی از حد واسط­ه ای نایترنواتینیل-X-سایلیلن با حالت الکترونی پنج­ تایی به دست می ­آیند. که به­ طور تجربی قابل دسترسی نیستند (Br، Cl، F، X=H، </em...

full text

پایداری و ابر پایداری همریختی های سه تایی ژوردان روی جبرهای باناخ سه تایی

هدف در این پژوهش، ارائه یک رابطه جدید و کاربردهایی از آن است. در این پژوهش به ابر پایداری و پایداری هایرز‎ -اولام‎‎ -راسیاس‎ برای همریختی های سه تایی ژوردان و مشتق های سه تایی ژودان روی جبر های باناخ‎‎ سه تایی و ‎c*‎جبرهای سه تایی می پردازیم.

15 صفحه اول

مقایسه اثر مجاورت ابررسانایی در ابررساناهای با جفت شدگی های یک تایی، سه تاییosp و سه تایی esp

در این مقاله، اثر مجاورت ابررسانایی برای یک ناحیه ابررسانا با سه نوع جفت شدگی یک تایی، سه تایی osp و سه تایی esp در تماس با یک ناحیه فرومغناطیس تمیز بررسی می گردد. با استفاده از رهیافت تابع گرین شبه کلاسیکی، تابع دامنه جفت ابررسانایی برحسب پارامترهای مشخصه سیستم محاسبه شده و میزان نفوذ این همبستگی های ابررسانایی به داخل ناحیه فرومغناطیس بررسی و با هم مقایسه می شوند. نشان داده می شود که همبستگی ...

full text

پایداری و ابرپایداری همریختی ها و مشتقات سه تایی روی شبه جبرهای باناخ سه تایی

این پایان نامه شامل دو بخش می باشدکه در فصل اول به تعاریف و مفاهیم مقدماتی و به تاریخچه مختصری از سیر مطالعات و پژوهش ها در زمینه مساله پایداری پرداخته شده است و در فصل دوم با استفاده از یک معادله تابعی مفهوم پایداری خمریختی ها و مشتقات سه تایی روی شبه جبرهای باناخ سه تایی را مورد بررسی قرار داده ایم سپس نتایجی از پایداری و ابرپایداری همریختی ها و مشتقات سه تایی روی شبه جبرهای باناخ سه تایی را ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023